
J. Fluid Mech. (2009), vol. 628, pp. 395–425. c© 2009 Cambridge University Press

doi:10.1017/S0022112009006375 Printed in the United Kingdom

395

A mechanism of formation of multiple zonal
jets in the oceans

P. BERLOFF1,2†, I. KAMENKOVICH3

AND J. PEDLOSKY1

1Physical Oceanography Department, Woods Hole Oceanographic Institution,
MA 02543 508/289-2462, USA

2Grantham Institute for Climate Change and Department of Mathematics,
Imperial College, London SW7 2AZ, UK

3RSMAS, University of Miami, Coral Gables, FL 33146, USA

(Received 4 July 2008 and in revised form 26 January 2009)

Multiple alternating zonal jets observed in the ocean are studied with an idealized
quasigeostrophic model of flow in a zonal channel. The jets are maintained by the
eddies generated by the imposed, supercritical background flow. The formation, non-
linear dynamics and equilibration of the jets are explained in terms of linear stability
arguments and nonlinear self-interactions of the linear eigenmodes. In the proposed
mechanism, energy of the background flow is released to the primary instability mode
with long meridional and short zonal length scales. This mode undergoes secondary,
transverse instability that sets the meridional scale of the emerging multiple zonal
jets. This instability channels energy into several weakly damped zonal eigenmodes
that amplify the jets. The emerging jets feed back on the instabilities through the
partial meridional localization of the most unstable eigenmodes.

1. Introduction
1.1. Background

The principal phenomenon studied in this paper is the formation of multiple,
alternating zonal jets in the oceans. Solid observational (Hogg & Owens 1999;
Maximenko, Bang & Sasaki 2005; Ollitrault et al. 2006; Huang et al. 2007; Sokolov
& Rintoul 2007; Herbei, McKeague & Speer 2008; Ivanov, Collins & Margolina
2008; Maximenko et al. 2008; Schlax & Chelton 2008) and numerical (Sinha &
Richards 1999; Nakano & Hasumi 2005; Richards et al. 2006; Huang et al. 2007;
Kamenkovich, Berloff & Pedlosky 2008) evidence of these jets has emerged over the
last few years. It is plausible that these jets are dynamically similar to those observed
in the atmospheres of giant gas planets, such as Jupiter (Galperin et al. 2004).

Oceanic multiple zonal jets are latent jets, because they are comparable to or
even weaker than the associated mesoscale eddies, which tend to mask the jets in
instantaneous flow snapshots. Also, the oceanic multiple jets are perturbations on
the background flows such as the mid-latitude gyres and the Antarctic Circumpolar
Current. Typical velocities of the time-mean oceanic jets are a few centimetres per
second, which makes them prominent features of the deep-ocean circulation. The
meridional wavelength of the jets is 150–300 km, and overall it decreases at higher
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latitudes. The vertical structure as well as the seasonal and interannual variabilities of
the jets are poorly known. Atmospheric multiple zonal jets are manifest jets, because
they are substantially stronger than the associated eddies. On giant gas planets, such
as Jupiter, the jets easily manifest themselves as alternating stripes of different colours.

The theoretical cornerstone of the multiple-jet studies was laid by Rhines (1975),
who, from the analysis of decaying barotropic turbulence, argued that the meridional
scale of the jets (a.k.a. Rhines scale) is determined by a balance between the nonlinear
advection and the linear meridional advection of the planetary vorticity. (The Rhines
scale is commonly thought of as the physical scale at which the inverse energy
cascade in the turbulence is ‘arrested’ by the propagating Rossby waves. However,
there are arguments that most of the cascading energy overcomes the ‘arrest’ and
continues to cascade up to the largest scales (Huang & Robinson 1998; Sukoriansky,
Dikovskaya & Galperin 2007).) Since then, nearly all theories of the jets invoke both
nonlinearity of the flow and the meridional gradient of the Coriolis parameter (i.e.
the β-effect) as the fundamental aspects. However, the required degree of nonlinearity
is uncertain, and it has been argued that the barotropic jet can be a weakly nonlinear
phenomenon (Manfroi & Young 1999, 2002). Also, it has been argued that the jets
emerge only if the β-effect exceeds a critical threshold, which depends on latitude,
the first Rossby deformation radius and the intensity of the energy cascade (Smith
2004; Theiss 2004). Finally, with the latitude-dependent planetary-vorticity gradient,
an equatorward energy cascade has been proposed that should amplify the jets at the
low latitudes (Theiss 2004).

Since the pioneering work of Williams (1978), who looked at an idealized but
global model of the barotropic atmosphere, particular attention has been paid to
the equilibrated barotropic dynamics. There, the barotropic jets emerge in forced-
dissipative regimes driven by the spatially homogeneous, small-scale random forcing.
Such forcing is assumed to represent interactions of the barotropic mode with the
transient baroclinic eddies. The energy spectrum corresponding to the barotropic
multiple-jet regime is strongly anisotropic (e.g. Vallis & Maltrud 1993; Chekhlov
et al. 1996; Danilov & Gryanik 2004; Danilov & Gurarie 2004; Galperin et al. 2004),
and the spectral nonlinear interactions are significantly non-local (Balk, Nazarenko &
Zakharov 1990). From the stochastic structural stability approach, it is argued that the
barotropic jets are the preferred growing structures excited by the imposed stochastic
forcing (Farrell & Ioannou 2007, 2008).

Baroclinic jet components, baroclinic dynamics and interactions between the
barotropic and baroclinic vertical modes are poorly understood, because they require
more complex models with several vertical degrees of freedom. In a two-layer model
of a baroclinically unstable background flow, multiple zonal jets emerge and persist
for a long time (Panetta 1993, hereafter P93). In the explored range of parameters,
P93 finds that meridional scaling of these jets is consistent with the Rhines scale and
that the jets are maintained by divergence of the momentum rather than buoyancy
eddy flux. The results of P93 have been extended towards multiple zonal jets in
a wind-driven, zonal-channel model (Treguier & Panetta 1994). Some other studies
focus on transitions between the one- and two-jet regimes (Lee 1997) and on the
truncated P93-like model (Kaspi & Flierl 2007). Finally, it is suggested that, in the
presence of bottom friction, baroclinic jets have baroclinic–barotropic interactions
that break down the inverse cascade arguments (Thompson & Young 2007).

It has been proposed that the multiple jets can be interpreted kinematically, in terms
of the “potential vorticity (PV) staircase” conjecture (Baldwin et al. 2007; Dritschel &
McIntyre 2008), which stems from the inhomogeneous mixing argument of McIntyre
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(1982). The underlying idea of the conjecture is that the cores of the (prograde)
eastward jets tend to act as narrow material transport barriers that separate broad
zonal bands characterized by intense meridional mixing of material by the eddies.

Finally, there are relatively few studies of multiple zonal jets in idealized closed
basins (Berloff 2005; Kramer et al. 2006; Nadiga 2006), and dynamical differences
between the zonal-channel and closed-basin jets remain poorly understood.

To summarize, our present theoretical understanding of the multiple zonal jets is
dominated by the ‘kinematic’ and ‘spectral’ approaches. The former one talks about
relatively well-mixed eddy surf zones separated by the meridional transport barriers
that constitute the underlying kinematical template of the multiple jets. The latter one
focuses on the anisotropic inverse energy cascade that stops at some scale and feeds
the multiple jets. It is still unclear which of the proposed ideas apply to the ocean
and atmosphere, because the underlying theoretical models remain highly idealized.
The essential and novel part of our present work is that we promote linear stability
analysis and nonlinear self-interactions of the critical eigenmodes as the arguments
underpinning dynamics of the multiple jets. Also, in many aspects the model that we
analyse is more realistic than most of the previously studied theoretical models.

1.2. Statement of the problem

Our principal hypothesis is that the oceanic jets are driven by the intrinsic
nonlinear dynamics associated with mesoscale geostrophic eddies, rather than by
inhomogeneities of the oceanic boundary conditions. We focus on a variation of the
classical idealized model of the multiple zonal jets in a zonal channel (e.g. in P93) but
choose the model parameters with guidance from the eddy-resolving model of the
North Atlantic that simulates a set of such jets (Kamenkovich et al. 2008; hereafter
KBP08). In this solution there are zonal jets everywhere, but we focus on two distinct
sets of pronounced multiple jets in the two regions: one region includes northern
part of the subtropical gyre and southern part of the subpolar gyre, and the other
region includes southern part of the subtropical gyre. In both regions the background
flow is upper-ocean-intensified and predominantly zonal; in the former region it is
eastward, whereas in the latter one it is westward. Therefore, in our idealized model,
the eddies and, thus, the jets are maintained by either eastward-background (EB) or
westward-background (WB) flows, which correspond to different parts of the North
Atlantic wind-driven gyres. (In the idealized studies of the atmospheric jets, only EB
flows are considered, because of the generic equator-to-pole decrease of temperature
associated with them.) We calculate fully nonlinear solutions and focus not only on
their equilibrated states but also on their spin-up from the perturbed state of rest.
Our focus is on the flow patterns and eddy/large-scale interactions, and the goal is
to explain the mechanism responsible for formation of the jets.

The main distinction of this work from the previous studies is in the use of linear
stability arguments. This approach is different from the ‘arrested’ inverse cascade and
‘PV staircase’ ideas discussed in previous section.

1.3. Ocean model

This is the model of jet formation in an idealized zonal background flow, which
can represent a mid-latitude gyre interior, away from meridional boundaries, or
the Antarctic Circumpolar Current. The jets, driven by instabilities of the prescribed
supercritical background velocity with vertical shear, are simulated in zonally periodic
channel with vertical walls and flat bottom. Uniformity of the background flow and
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absence of the bottom topography allow us to avoid additional length scales of the
problem. Here, the motivation is to establish the simplest, but physically relevant,
starting point; more physical complexity can be systematically added later on. Overall,
the model is close to that of P93.

The meridional width of the channel is mostly Ly = 1800 km, but some solutions
with Ly = 3600 km are also discussed. The channel is zonally periodic with the period
Lx =2 Ly . The background planetary vorticity gradient is β =2 × 10−11 m−1 s−1, and
the mid-channel (45 ◦N) Coriolis parameter is f0 = 0.83 × 10−4 s−1. The bottom friction
γ =2 × 10−8 s−1 is small and only 6 % of the energy is dissipated by the bottom. Most
of the energy is dissipated by the lateral friction, which parameterizes effects of
unresolved eddies; the eddy viscosity is ν = 100 m2 s−1. Stratification is represented by
two stacked isopycnal layers with the thicknesses H1 = 1 km and H2 = 3 km, starting
from the top. The stratification parameters are

S1 =
f 2

0

H1 g′
1

, S2 =
f 2

0

H2 g′
1

, (1)

where g′
1 is reduced gravity associated with the density jump across the internal

interface. We chose g′
1 so that the first baroclinic Rossby deformation radius

Rd1 = g′
1

√
H1H2/f0

√
H1 + H2 is 25 km.

The quasigeostrophic PV equations (Pedlosky 1987) for two dynamically active
isopycnal layers are

∂q1

∂t
+ J (ψ1, q1) + β

∂ψ1

∂x
= ν∇4ψ1, (2)

∂q2

∂t
+ J (ψ2, q2) + β

∂ψ2

∂x
= ν∇4ψ2 − γ ∇2ψ2, (3)

where the layer index starts from the top; J (, ) is the Jacobian operator; and the
terms with ν and γ are the lateral and bottom friction, respectively. Isopycnal PV
anomalies qi are related to velocity streamfunctions ψi through the elliptic, PV
inversion sub-problem:

q1 = ∇2ψ1 + S1 (ψ2 − ψ1), (4)

q2 = ∇2ψ2 + S2 (ψ1 − ψ2). (5)

The isopycnal flow velocity components are found from the velocity streamfunction:

ui = −∂ψi

∂y
; vi =

∂ψi

∂x
. (6)

The dynamical equations are actually solved either in their original, isopycnal-layer
form or in terms of their vertical-mode equivalence (McWilliams 2006). No-slip
lateral-boundary conditions are used on the lateral walls. The mass and momentum
constraints are imposed following McWilliams (1977).

The forcing in the governing equations is introduced through the imposed,
background vertical velocity shear (e.g. Haidvogel & Held 1980; Panetta 1993):

Ψi = −Ui y, ψi −→ Ψi + ψi, (7)

where Ui are the background zonal-velocity parameters of the problem. In the EB and
WB flow regimes, U1 = 6 and −3 cm s−1, respectively; and U2 is zero. The background
flow is linearly unstable, as suggested by the classical Phillips problem (e.g. Pedlosky
1987). Given (7), the governing equations are rewritten with respect to perturbations,
ψi and qi , around the background flow.
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The governing equations (2)–(7) are discretized with second-order finite differences,
so that formulation of the Jacobians is PV-conserving. The prognostic equations are
marched in time with the leapfrog scheme and 0.5 hour time step, and the elliptic
PV inversion sub-problem is solved for the corresponding velocity streamfunctions
on each time step, by a direct solver. The horizontal grid, with 512 × 257 points, has
uniform resolution of 7 km. Statistically equilibrated regimes are reached after 20–
40 years of integration.

Equilibrium solutions of the nonlinear flow have well defined multiple jets (figure 1).
The jets have a relatively strong barotropic component. The eastward jets are faster
and narrower than the westward jets. The EB flow has stronger jets because of the
stronger critical shear. In the EB flow barotropic and baroclinic jet components are
in phase with each other, whereas in the WB flow they oppose each other. As a result
of this behaviour, in the EB/WB flow deep-ocean jets are weaker/stronger than the
upper-ocean jets.

2. Spin-up
We begin with the analysis of the fully nonlinear spin-up of flow from the state of

rest, which is seeded with random small-amplitude perturbations. The spin-up process
provides insights which we later use for explaining the underlying mechanism of the
multiple-jet formation.

At the first stage of the spin-up, the structure of the emerging alternating meridional
jets (figure 2a) is very consistent with the primary instability mode (a.k.a. ‘noodles’)
predicted by the linear stability analysis (see § 3.2). The mode is a result of the
baroclinic instability, and its zonal scale depends on the baroclinic deformation
radius. Motion in the ‘noodles’ is perpendicular to the background flow; hence they
maximize extraction of the available potential energy from the background flow. Also,
in figure 2(a) there are ‘braids’ that distort the noodles: we associate them with weakly
damped, large-scale eigenmodes of the model (also discussed in § 3.2). We checked
that if the initial perturbation is chosen in the form of the linear noodles; then the
large-scale eigenmodes are not significantly excited, because they are initially absent.

At the second stage of the spin-up, the noodles succumb to the secondary instability
discussed in § 3.3. This process is manifested in figure 2(b) by the emergence of flow
structures with the meridional scale of the jets. This instability imposes the meridional
scale of the future multiple jets. Also, seen on this stage is the emerging zonal
eigenmode, which is discussed in § 3.4. This eigenmode feeds the emerging zonal jets.

The third spin-up stage is characterized by amplification of the emerging multiple
jets and by continuing meridional localization of the noodles by the emerging jets
(figure 2c), until the flow equilibrates at a finite amplitude. The equilibration can be
interpreted as significant meridional localization of the flow instabilities, as we show
in § 3.6. The third spin-up stage is more pronounced in the zonal-channel situation,
because there are zonal eigenmodes available which strongly amplify the jets. In the
closed-basin extension of the model, the jets are weaker and more latent; hence the
third spin-up stage is less pronounced (Berloff, Kamenkovich & Pedlosky 2009).

Comparison of the spin-up experiments with oceanic observations is problematic,
since the ocean not only stays close to the equilibrated state but is also affected by
the seasonal and interannual variabilities. However, the emergence of the noodles,
followed by the emergence of zonal currents, is consistent with observations of
seasonally modulated instabilities of the South Pacific subtropical countercurrent
(Qiu, Scott & Chen 2008; Farrar 2008, personal communication). Also, qualitatively
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Figure 1. Multiple-jet flow in the two-layer zonal channel. Instantaneous (a) barotropic and
(b) baroclinic velocity streamfunctions in the reference EB flow (CI= 2 Sv). The corresponding
time-mean zonal velocity profiles are shown in the right panels. Panels (c) and (d ) show the
same quantities as the upper panels but for the reference WB flow (CI= 1 Sv). Straight lines
indicate the background velocities. Latitude values are normalized by the width of the channel
(Ly =1800 km= 72Rd1).
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Figure 2. Spin-up of the multiple jets. Instantaneous upper-ocean streamfunction is obtained
(a) after two years of the model integration starting from small random perturbations, (b) 200
days later and (c) another 200 days later; CI are (a) 0.4 Sv and (b, c) 5 Sv. The reference EB
flow solution is obtained in the broad channel. Panel to the right of each streamfunction field
shows the corresponding zonally averaged zonal velocity, and panel below the streamfunction
field shows meridionally averaged meridional velocity.
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similar behaviours are reported in spin-up experiments with the North Atlantic
eddy-resolving model (KBP08).

3. Linear stability problem
In this section we present a theoretical framework that interprets modification of

the flow on each of the main three stages of the spin-up. Our approach is to apply a
linear stability analysis on each of these stages.

3.1. Formulation

The linear stability analysis considered in this section is an extension of the classical
works (Phillips 1956; Pedlosky 1975b). The linearized governing equations of the
two-layer dynamics are

∂q1

∂t
+ J (Ψ1, q1) + J (ψ1, Q1) + β ψ1x = ν∇4ψ1, (8)

∂q2

∂t
+ J (Ψ2, q2) + J (ψ2, Q2) + β ψ2x = ν∇4ψ2 − γ ∇2ψ2, (9)

where Qi and Ψi are the background PV and velocity streamfunction, respectively.
We consider three types of the background flow: (i) zonal, meridionally uniform

flow; (ii) combination of (i) with meridional, zonally periodic flow; and (iii) zonal,
meridionally non-uniform flow. These types correspond to the flows that are present
at the end of each stage of the spin-up. The first flow type, given by (7), is the simplest
one – its critical eigenmode describes the primary instability, discussed in § 3.2. This
problem also yields weakly damped and zonally uniform eigenmodes, important for
the multiple-jet formation mechanism, that are discussed in § 3.4. The second flow
type is dictated by the critical eigenmodes of the first flow type,

Ψi = −Ui y +

∫ x

0

Vi(x) dx, (10)

and it yields the critical eigenmode describing the secondary instability, discussed
in § 3.3. Here, we consider meridional velocity components that are zonally periodic:

Vi(x) −→ Av Vi cos(2πx/L0 + Φi). (11)

Here, Vi , L0 and Φi are given by the primary instability pattern; the amplitude Av

is a new parameter of the problem, which is given by the strength of the noodles
emerging in spin-up experiments (§ 4.4). Finally, with the third flow type, we analyse
the stability of the finite-amplitude zonal jets:

Ψi = −Ui y − Au

∫ y

0

ui(y) dy. (12)

As the amplitude of these jets Au increases, as a part of the spin-up process, not only
do the noodles become distorted and partially meridionally localized on the jets, but
also they split into three distinct types of the eigenmodes, discussed in §§ 3.5 and 3.6.

The linearized equations are Fourier transformed in time and in either one or both
horizontal directions (see the Appendix). The direction that is not Fourier transformed
is discretized with second-order finite differences, and the spatial resolution is kept
the same as in the full nonlinear model. We tested that the outcome is not sensitive
to further refinement of the spatial grid. For the flow of the third type, a no-slip
boundary condition is applied on the zonal boundaries. The discretized equations are



A mechanism of formation of multiple zonal jets in the oceans 403

260

240

Z
o
n
al

 w
av

el
en

g
th

T
im

e 
p
er

io
d
 (

d
ay

s)

220

200

180

160

140

–
1
2

–
1
0

–
8

–
6

–
4

–
2 0

U (cm s–1)

2 4 6 8
1
0

1
2

–
1
2

–
1
0

–
8

–
6

–
4

–
2 0

U (cm s–1)

2 4 6 8
1
0

1
2

–
1
2

–
1
0

–
8

–
6

–
4

–
2 0

U (cm s–1)

2 4 6 8
1
0

1
2

280 0.5 0.5

0.5
0.5

0.5 0.5

300 1400

1200

1000

800

600

400

200

0

G
ro

w
th

 r
at

e 
(y

ea
r–

1
)

24
22
20
18
16
14
12
10
8
6
4
2
0

(a) (b) (c)

Figure 3. Properties of the most unstable eigenmode (i.e. noodles) growing on the uniform
zonal flow in the unbounded domain: dependence on the planetary vorticity gradient, β . (a)
Zonal wavelength, (b) time period and (c) growth rate as functions of the upper-ocean
background velocity. On each panel, thick curve corresponds to the reference value of
β = 2 × 10−11 m−1 s−1. There are three values of β considered: 0.5, 2 and 4 × 10−11 m−1 s−1

(curves corresponding to the lowest value are labelled by ‘0.5’).

solved numerically as the generalized eigenvalue problem. The solutions are obtained
in terms of the eigenmode patterns and the eigenvalues, which specify growth rates
and temporal frequencies of the eigenmodes.

3.2. Uniform background flow: unbounded domain

Marginal stability curves corresponding to uniform zonal flow of variable strength
are shown in figure 3, and the typical dispersion relationships are shown in figure 4.
Overall, the dispersion relationship is that of the classical Rossby waves modified by
the background shear and damping. Without lateral viscosity and bottom friction
and with equal layer depths, this is the Phillips problem (Pedlosky 1987). In both
EB and WB flows and depending on the parameters of the problem, the critical
eigenmode (figure 4) has relatively large zonal wavenumbers k which correspond to
the wavelength of 180–270 km. Given Rd1 = 25 km, this is 7–11 Rd1 – noticeably
longer than 2πRd1. The critical meridional wavenumbers l are always equal to zero;
hence the critical eigenmode can be characterized as a set of meridional alternating jets:
following Pedlosky (1975b) we refer to such a pattern as noodles. In the supercritical
EB/WB flow, the phase of the critical eigenmode always propagates to the east/west,
and the corresponding eigenperiods are interannual/intermonthly. Regardless of the
background shear, there are also very weakly damped eigenmodes with small k and
l – they can be easily excited by transient forcing. In the next section we argue
that some of the eigenmodes with k = 0 (zonal eigenmodes) and small l significantly
contribute to the multiple jets.

Increasing the speed of the background flow results in shorter time periods, longer
zonal wavelengths and larger growth rates of the noodles (figure 3). We also studied
the dependence of noodles on ν, γ and β . The magnitude of the critical background
flow strength increases with ν and β (figure 3c); in the EB/WB flow it weakly
increases/decreases with γ . The zonal eigenperiod 2π/k increases moderately with
ν and very weakly with γ . This is because lateral friction, unlike the bottom drag,
acts selectively on the smaller length scales and, thus, moves the stability threshold to
larger length scales. The time period is largely insensitive to ν; variation of γ changes
it noticeably only in the EB flow, so that larger friction implies shorter period.
Increasing β decreases the zonal eigenperiod for both background flow directions –
this makes the noodles narrower. The corresponding time period becomes even
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of the reference EB flow as functions of the zonal (k) and meridional (l) wavenumbers. The
lower row of panels shows the same values but for the reference WB flow. Contour intervals:
(a, c) CI = 0.1 year−1; (b) CI= 0.04 and 1.0 year−1 for the small and large eigenfrequencies,
respectively; and (d ) CI= 0.5 year−1. Positive/negative contours in the right panels correspond
to the phase lines propagating to the east/west.

longer/shorter in the EB/WB flow, thus increasing the asymmetry between the EB
and WB noodles.

In the real ocean, the noodles are likely to be distorted by the background flow and
planetary vorticity inhomogeneities, as well as by the large-scale transient variability.
In particular, in figure 2(a) there are braids that distort the noodles: we associate
them with weakly damped eigenmodes of the model. These eigenmodes occupy the
lower left corners of the dispersion diagrams in figure 4. In addition to all of these
inhomogeneous aspects, the noodles are distorted by the jets themselves as a part of
the feedback of the jets on the eddies (§ 3.5).
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Finally, the analysis of this section is extended from the unbounded domain to
the zonal channel. The stability properties of the corresponding flow are found to
be very similar: details of the zonal-channel noodles are accurately predicted by the
unbounded-domain analysis. In the free-slip channel, the critical (i.e. with the largest
growth rate) mode is exactly the sum of the two critical eigenmodes of the unbounded
domain, with ±lcrit . Such a mode propagates in zonal direction only. In the no-slip
channel, which is in the focus of this study, the above mode is modified near the
boundaries. We find that this modification has little impact on other properties of the
mode.

To summarize, generation of the flow pattern with long-range meridional
correlations is a very robust phenomenon, but details of this pattern are somewhat
sensitive to the background flow and other external parameters.

3.3. Secondary instability

The finite-amplitude noodles are unstable to the transverse secondary instability,
which is consistent with the one seen in the spin-up solutions (§ 2.4). Secondary
instabilities of different flows have been studied in the past (e.g. Orszag & Patera
1983; Bonfigli & Kloker 2005; Stern & Simeonov 2005), and here we extend the work
by Pedlosky (1975b) by adding the background flow to the noodles and by relating
the results to the multiple-jet problem.

For the corresponding linear stability problem, the flow consists of the ensemble of
finite-amplitude noodles, given by the primary stability analysis, that are added to the
uniform background flow (figure 5a, e). (Here, the argument is similar to Manfroi &
Young (2002), but the background-flow and baroclinic effects are taken into account.)
The amplitude of the noodles is provided by the spin-up solutions at the end of the
first spin-up stage, but for the theoretical purposes we treat their amplitude as a
free parameter, as in (11). The noodles are kept ‘frozen’ in time; that is their slow
zonal propagation is not taken into account, for simplification of the linear analysis.
We verified that this simplification does not introduce large errors by calculating
growing and breaking noodles in the fully nonlinear model. In these calculations,
the initial noodles were perturbed with anomalies of different length scales. Here, we
find that the meridional scale of the fastest growing transverse mode is similar to the
meridional scale predicted by our linear analysis.

The secondary instability, given by the fastest growing eigenmode, is meridionally
periodic, with the scale corresponding to the multiple zonal jets (figure 5). In the
zonal direction, the secondary eigenmodes are not trapped by the individual noodles,
as indicated by their amplitudes that never approach zero. The zonal wavelength of
the eigenmode amplitude is half of the wavelength of the noodles, thus indicating that
the corresponding northward and southward meridional jets have the same impacts
on the eigenmode pattern. Other eigenmode properties differ for the EB and WB
flows: in the former case, the eigenmode is characterized by the ‘checkerboarded’
velocity streamfunction (figure 5b), whereas in the latter case the streamfunction is
‘striped’ (figure 5f ). This is because the WB eigenmode is characterized by weaker
zonal variation of the phase. As can be seen in their zonal averages, both the
checkerboarded and striped patterns have obvious contributions of the dominant,
primary zonal eigenmodes. Hence, the transverse instability provides an efficient
mechanism of the energy transfer from the meridional directly to zonal motions.
(Such spectrally non-local energy transfer is observed in the mesoscale eddy fields
(Qiu et al. 2008).)
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Figure 5. Critical eigenmodes of the finite-amplitude noodles. Left/right column of panels
corresponds to the EB/WB flow solution. (a, e) Meridional velocity of the background
noodles in the upper- (thick) and deep-ocean (thin curve) isopycnal layers. (b, f ) Upper-ocean
velocity streamfunction (arbitrary amplitude). (c, g) Amplitude (normalized by its upper-ocean
maximum value) and (d, h) phase of the zonal component of the critical eigenmode.

The meridional length scale of the secondary instability, that is the scale of the
fastest growing eigenmode, which sets the meridional width of the jets, depends
on the amplitude of the noodles but saturates when the amplitude of the noodles
becomes comparable with the amplitude of the background flow (figure 6a). If
the amplitude approaches zero, then the meridional length scale increases to infinity,
because instabilities of the background flow with infinitesimal noodles are the noodles
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Figure 6. Stability properties of the finite-amplitude noodles. (a) Meridional wavelength and
(b) growth rate of the critical eigenmodes of the EB and WB flow solutions. Positive/negative
values of the maximum upper-ocean meridional velocity, V1, indicate EB/WB flows. Thin
horizontal lines in (b) indicate growth rates of the infinitesimal noodles.

themselves. If the amplitude becomes 1.5–2 times larger than the background zonal
flow, then the meridional length scale saturates at about 300–400 km (i.e. 12–16 Rd1),
which is consistent with the emerging multiple zonal jets.

Can the transverse instability be dominated by larger length scales associated with
the weaker noodles? (For instance, figure 6a suggests that critical instabilities of
the WB flow noodles with the velocity amplitude of about 1.5–4.0 cm s−1 have
the meridional length scale of about 600 km.) The answer is no, because critical
instabilities of the weaker noodles have growth rates that are smaller than the growth
rates of the noodles themselves (figure 6b). This implies that, before such weakly
growing eigenmodes grow to finite amplitudes, the noodles themselves will grow to a
larger amplitude, and then they will develop narrower zonal jets. We confirmed this
by fully nonlinear calculations, as those described in the beginning of this section.
Thus, the secondary instability eventually overcomes the primary instability pattern
because of the faster growth rates of the former rather than because of the potential
saturation of the primary instability by the nonlinearity.

Finally, we find that eigenperiods of the critical eigenmodes are infinitely large.
Thus, the corresponding phase velocity is zero, and therefore the secondary instability
pattern does not propagate in space. This also implies that the instability pattern
does not propagate meridionally. Hence the multiple zonal jets are pinned to their
locations and are not averaged out in the time mean.

To summarize, meridional scale of the multiple zonal jets is set by the instability of
the noodles emerging on the background flow. The corresponding critical eigenmode
efficiently projects on the dominant zonal mode that acts as the template for the
emerging jets.

3.4. Zonal eigenmodes

In this section we consider a special set of the eigenmodes discussed in previous
section; some of the zonally uniform eigenmodes (k = 0) significantly contribute to
the multiple zonal jets. These eigenmodes, occupying the lower left corner of the
dispersion diagrams (e.g. figure 4), are very weakly damped. The zonal eigenmodes
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Figure 7. Zonal eigenmodes. (a) Upper-ocean zonal velocity profiles of the second (dashed),
third (thin) and eighth zonal eigenmodes (thick curve); (b) decay rates of the first 20 zonal
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the reference control parameters. Zonal velocities in (a) are normalized by their maximum
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predicted by the unbounded-domain analysis are modified by the zonal-channel
boundaries (figure 7). The bounded eigenmodes preserve their weak decay rates, and
hence the eigenmodes with fewer meridional lobes need weaker forcing to get excited.
The spectrum of the bounded zonal eigenmodes is discrete. An important property
of the zonal eigenmodes is that they do not depend on the background flow, as can
be easily seen from the governing equations.

We order the zonal eigenmodes in terms of increasing decay rate. We find that
the baroclinic component of the reference EB and WB solutions is dominated by
the eighth mode. Half of the zonal eigenmodes (e.g. the third mode in figure 7a)
have zonal velocity which is meridionally antisymmetric with respect to the middle
of the channel. Such eigenmodes imply non-zero total viscous flux of the relative
vorticity from the lateral boundaries into the channel interior. Therefore, they do not
satisfy the momentum constraint imposed by the dynamics (McWilliams 1977). This
explains why multiple-jet time-mean flows predicted by the full model have zonal
velocity which is nearly symmetric around the middle latitude – they are dominated
by the meridionally symmetric zonal eigenmodes. (There are special antisymmetric
flow configurations that have no relative vorticity flux from the lateral boundaries,
but, for reasons unknown to us, the dynamics do not favour antisymmetric flow
contributions.) Decay rates of the zonal eigenmodes increase with the eigenmode
index more than in the unbounded domain, so that the tenth eigenmode decays five
times faster than the first eigenmode. This suggests that the full flow is likely to be
dominated by relatively few zonal eigenmodes. In terms of their vertical structure,
the zonal eigenmodes are all mixed; that is they are neither barotropic nor baroclinic.
However, the important zonal eigenmodes (i.e. those with low index) have a ratio of
their barotropic to baroclinic component which is either small (<0.1) or large (>10):
such eigenmodes can be accurately (but not precisely) characterized as baroclinic and
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barotropic, respectively. We find that the first dozen zonal eigenmodes with weak
decay rates are baroclinic, and the barotropic eigenmodes of interest have higher
indices.

How do the zonal eigenmodes contribute to the time-mean multiple jets? Let’s
consider a set of the n= 1, N zonal eigenmode streamfunctions χn(y) that are ordered
in terms of the increasing decay rate and are normalized by the energy norm. The
observed, time-mean jet streamfunction can be represented as

ϕ =

N∑
1

Cn χn, (13)

where the set of Cn is the zonal mode spectrum and N is the number of meridional
degrees of freedom. We define the scalar product of two streamfunction fields as

{φ ψ} =
1

Ly

∫ Ly

0

φ(y) ψ(y) dy. (14)

Multiplication of (13) by each of the N zonal eigenmodes, yields the corresponding
set of linear equations on Cn:

{ϕ χn} =

m=N∑
m=1

Cn {χn χm}. (15)

Scalar products of the zonal eigenmodes on the right-hand side of (15) are generally
non-zero for n �= m, because the eigenmodes are not orthogonal to each other.

We solved the linear algebraic problem (15) numerically, not only for the time-mean
jets but also for the spin-up experiments (§ 2). The outcome, illustrated by figure 8, can
be summarized as follows: The dominant barotropic and baroclinic zonal eigenmodes
appear as a result of the secondary, transverse instability of the noodles, discussed
in § 3.3. Such zonal eigenmodes, referred to as the primary ones, are picked up by the
meridional length scale of this instability. (Note that meridional scaling in figure 5
matches meridional scaling of the zonal eigenmodes associated with the primary
spectral peaks in figure 8a.) The zonal eigenmode spectrum is dominated by very
few barotropic and baroclinic primary eigenmodes: even one or two such eigenmodes
capture the velocity profiles of the zonal jets quite well (figure 8b, c). The barotropic
zonal eigenmodes have generally larger Cn, and this is even more so in the WB flow
regime, but this simply reflects the fact that the barotropic flow component is stronger
than the baroclinic one.

Later in the flow spin-up process (§ 2), when the primary zonal eigenmodes
reach their maximum amplitudes, the zonal-eigenmode spectrum develops secondary
baroclinic- and barotropic-eigenmode peaks (e.g. as those around n= 50 and 80
in figure 8a). These peaks correspond to the emerging secondary, baroclinic and
barotropic zonal eigenmodes, which have meridional length scale twice shorter than
that of the primary zonal eigenmode. The secondary zonal eigenmodes are responsible
for the east–west asymmetrization of the multiple jets (i.e. the eastward jets are
sharper and more intense than the westward jets). We confirmed that the primary
and secondary zonal eigenmodes are driven by the eddies by calculating eddy forcing
(20) of the fully nonlinear solutions and by spatially correlating it with each of the
zonal eigenmodes. It is found that the maximal, and also positive, correlations are
indeed with the primary and secondary zonal eigenmodes.
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Figure 8. Evidence of the zonal eigenmodes in the multiple-jet flow. (a) Normalized spectrum
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To summarize, in addition to the noodles, the weakly damped zonal eigenmodes
are another important aspect of the multiple-jet dynamics in the zonal channel. These
eigenmodes not only provide the natural template for the multiple zonal jets but
also partially meridionally localize the flow instabilities and modify the eddies, as
discussed in § § 3.5 and 3.6.
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3.5. Partial localization of the noodles

We have demonstrated that the emergence of linear noodle mode and its subsequent
instability give rise to zonal jets. In this section, we describe how the noodles are
themselves modified by the emerging jets, through the mechanism of partial meridional
localization, and in § 3.6 we study feedbacks of the partially localized noodles on the
jets. In the zonal channel the meridional localization process is significantly amplified
by the leading zonal modes in the zonal-mode spectrum (§ 3.4). By extending the
linear stability analysis, we account for the feedback of the emerging zonal jets on the
flow instabilities. Such extension predicts that the noodles are transformed into three
distinct types of the eigenmodes – “localized noodles” – that, to a large degree, preserve
long-range meridional correlations. We have calculated meridional correlations of the
flow perturbations in the equilibrated state and found that these correlations are
consistent with the partially localized noodles. The nonlinear self-interaction of these
eigenmodes plays a central role in the jet dynamics (§ 3.6).

We take the time-mean velocity profile (i.e. imposed background flow plus time-
mean zonal jets predicted by the nonlinear model) and scale its zonal-jet part with
the non-dimensional amplitude, Au, which is subsequently varied from 0 to 1.5. Thus,
Au = 0 corresponds to the uniform background flow (§ 3.2), and Au =1 corresponds
to the actual velocity profile predicted by the nonlinear model. Since the time-mean
velocity profile is nearly symmetric with respect to the middle latitude of the channel,
for additional clarity we make it exactly symmetric by setting in (12)

ui(y) −→ Au ui(y) −→ Au

2
[ui(y) + ui(Ly − y)], (16)

where velocity is defined as in (6).
The corresponding linear stability problem is solved not only for 0 < Au < 1.5 but

also, as a sensitivity study, for several values of ν and γ . The critical eigenmode
for Au = 0 corresponds to the noodles modified by the zonal boundaries (§ 2.2). The
near-critical eigenmodes for Au = 0 have zonal wavenumbers similar to the critical
wavenumber; their meridional wavenumbers are such that they can be interpreted
as meridionally elongated cells with one or two or more meridional zero crossings
between the channel boundaries. We tracked the evolution of these eigenmodes, as well
as the evolution of the noodle eigenmode, induced by gradually increasing Au. The
outcome is that, with increasing Au, these eigenmodes become gradually transformed
and meridionally localized on the multiple jets (figure 9).

We leave out details of the complex localization process and focus on the important
aspects. One such aspect is grouping of the critical and nearly critical eigenmodes
into three robust and distinct eigenmode types, discussed further below, that are well
defined at large Au (figure 9). The exact value of Au defining the transition from the
weakly perturbed noodles to the three distinct types is hard to define, but this value
is significantly less than 1 and somewhere around 0.5.

A series of the full nonlinear-model simulations of the jets (not shown) for a
range of eddy viscosity and bottom friction parameters showed that the structure
of the jets is very robust. Below, we show that this result is consistent with the
corresponding linear stability analysis. The eigenmode properties depend on both
Au and friction parameters, but at large Au this dependence gradually fades away:
when Au approaches 1.3 – regardless of the background flow direction and friction
parameters – lcrit and ωcrit converge to the universal values (figure 10). Overall, with
the increasing Au, the meridional wavelength of the critical eigenmode increases by
about 30 %. The meridional wavelength tends to increase with the increasing ν and γ ,
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Figure 9. Localization of the noodles on the multiple jets. Amplitudes of the eigenmodes of
(a) type 1, (b) type 2 and (c) type 3 are shown for amplitude of the background jets, Au, equal
to 0.2 (thin), 0.5 (thin with filled circles) and 1.5 (thick curve). On panel (c), three isolated
peaks corresponding to Au = 1.5 (thick curve) belong to three separate type 3 eigenmodes
trapped by the corresponding eastward jets. (Two more eigenmodes of this sort, trapped on
the near-boundary eastward jets are not shown.) EB flow is considered; and dashed curves
in the panel (a) indicate the background and time-mean zonal velocities in the upper ocean
(arbitrary units).

as in the primary stability analysis (§ 2.2). The eigenperiod decays with Au, reaching
the values of less than 1 day for Au near 1.5, and it is sensitive to friction only in the
EB flow regime with Au < 0.5, where stronger friction implies a shorter eigenperiod.
Finally, the eigenperiod is negative/positive in the WB/EB case, indicating that the
critical eigenmode propagates to the west/east.

We focused on the 10 eigenmodes (‘top 10’) with the largest (and positive) growth
rates, ordered them according to their growth rates and traced them over the range
of Au. The ‘three types’ of the eigenmodes can be characterized as the following
(figures 11 and 12). The meridional structure of the eigenmodes indicates that the
dynamics remain meridionally non-local for all values of Au, although degree of this
non-locality decreases with stronger jets. We checked that the existence of the “three
types” of the eigenmodes does not qualitatively depend on the asymmetry between
the eastward and westward jets by calculating the linear eigenmodes for a sinusoidal
zonal velocity profile with similar width and amplitude of the jets.

We measure the degree of the alignment between eigenmode amplitude and jet
velocity by correlating the corresponding profiles: the correlation coefficients are
strongly positive/negative for the type 1 and type 3 eigenmodes and weakly negative
for the type 2 eigenmodes. Thus, in terms of the amplitude, the type 1 and type
2 eigenmodes are trapped to the westward jets (i.e. prograde/retrograde jets in the
WB/EB flow), and the type 3 eigenmode is trapped to the eastward (i.e. the other)
jets. Also, in terms of the amplitude, all eigenmodes are meridionally symmetric with
respect to the middle latitude of the channel, but in terms of the phase they are either
symmetric or antisymmetric. (For Au approaching 1.5, some of the eigenmodes split
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Figure 10. Stability properties of the multiple zonal jets. Dependence on the jets amplitude,
Au, eddy viscosity, ν, and bottom friction, γ , is explored. Left/right half of each panel
corresponds to the WB/EB flow reference parameters. Upper panels show dependence on Au

of (a) zonal and (b) time periods of the critical eigenmode, for ν =50, 100, 200 and 400 m2 s−1.
Left/right half of each panel corresponds to the WB/EB flow reference parameters. Amplitudes
corresponding to the WB flow reference solution are indicated as −Au, and amplitudes equal
to the minus and plus unity correspond to the actual time-mean jets from the WB and EB flow
reference solutions, respectively. Lower panels show the same properties but for γ = 0, 2 and
4 × 10−7 s−1. Functions corresponding to the reference values of ν = 100 m2 s−1 and γ = 0
are shown with thick curves, and for clarity some curves are marked with the corresponding
values of ν and γ .

in pairs that have meridionally asymmetric amplitudes, which are equivalent under
the transformation y −→ L−y.) The westward-trapped eigenmodes are meridionally
localized on the pairs of westward jets and are characterized by either two (type 1)
or four (type 2) maxima of the amplitude. In the latter case, the amplitude has the
characteristic ‘double-hump’ structure on each jet. The eastward-trapped eigenmodes
also come in pairs, except for the eigenmode trapped on the central eastward jet.

The type 1 and type 2 eigenmodes can be additionally classified into subtypes ‘A’
and ‘B’ (figures 11 and 12) characterized by the meridional profile of the eigenphase
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Figure 11. Unstable eigenmodes of the EB flow with the time-mean multiple zonal jets.
Eigenmodes shown have indices (a) 1, (b) 2, (c) 8 and (d ) 9, ordered in terms of the increasing
decay rates. Contour plots show velocity streamfunctions of the eigenmode patterns in the
1/4-period section of the channel. Since the eigenmodes are either symmetric or antisymmetric
with respect to the middle latitude of the channel, the upper-ocean pattern is shown in the
northern half of the plot and the deep-ocean one in the southern half. All of the eigenmodes
are normalized by the energy norm, and the (arbitrary) contour interval is the same throughout
the figure. Sub-panels to the right of the contour plots show corresponding amplitudes of the
upper- (thick continuous) and deep-ocean (thick dashed curve) components of the eigenmodes;
the curves are normalized by the upper-ocean maximum amplitude. In each panel, thin curve
with straight line in the middle show the time-mean zonal velocity profile of the jets (with
arbitrary units).

that is either antisymmetric, as in subtype A, or symmetric, as in subtype B, with
respect to the middle latitude of the channel. The A and B subtypes are additionally
characterized by zero and non-zero amplitudes, respectively, on the eastward jets.

There are significant differences between the EB and WB flow eigenmodes –
they underpin the corresponding kinematical and dynamical differences found in
the nonlinear solutions. In terms of the growth rates, type 1/type 2 eigenmodes
dominate in the EB/WB flows; the corresponding subtype A always dominates over
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Figure 12. The same as figure 11 but for the WB flow. The eigenmodes shown have indices
(a) 1, (b) 2, (c) 3 and (d ) 7.

B. Consistent with the nonlinear analysis, the EB/WB leading eigenmodes have larger
amplitudes in the upper/deep ocean. In all of the eigenmodes but substantially more
so in the WB flow, there is significant vertical phase shift, which indicates intensive
exchange of the potential energy between the eigenmodes and the time-mean flow.
Also, in the WB flow the type 3 eigenmode amplitude is more tightly confined to the
upper-ocean eastward jet cores, presumably making these jets narrower and faster,
through the associated nonlinear eddy forcing. Finally, in the case of Au = 1 the
eigenperiods of the type 1, type 2 and type 3 eigenmodes are noticeably different:
they are about 200/80, 800/100 and 100/200 days for the EB/WB flows.

To summarize, even in the presence of strong zonal jets, generation of the flow
patterns with long-range meridional correlations is a very robust phenomenon. In the
ocean regions populated by the multiple zonal jets, there is observational support for
the noodle-like patterns. Some recent observations of the sea surface height patterns
report alternating meridional jets (Sen et al. 2006; Huang et al. 2007), and qualitatively
similar patterns are diagnosed from the comprehensive general circulation model
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(GCM) solutions (KBP08). On the fundamental level, the noodles are characterized
not so much by their particular shape but, more importantly, by the long-range
meridional correlations associated with them. Identifying such correlations from the
data (e.g. sea surface altimetry) would be a crucial test for the theory.

3.6. Analysis of the multiple-jet eigenmodes

In this section, we analyse the dynamical roles of the multiple-jet eigenmodes,
discussed in the previous section. We focus on eddy forcing and its role in supporting
and equilibrating the multiple jets. It is shown that the eddy forcing associated with
nonlinear self-interactions of the most unstable eigenmodes, identified in the previous
section, is very similar to the eddy forcing predicted by the fully nonlinear dynamics.
The flow equilibration mechanism is explained in terms of the relationship between
the eddy-forcing efficiency and the jet strength.

Dynamical analysis of the flow solutions is based on calculating eddy fluxes of PV
and its components, relative vorticity

Ri = ∇2ψi (17)

and isopycnal stretching

B1 = S1 (ψ2 − ψ1), B2 = S2 (ψ1 − ψ2), (18)

which corresponds to buoyancy anomaly. First, the flow solutions are decomposed
into the time-mean, ψi , and fluctuation, ψ ′

i , components. In the ith isopycnal layer,
the time-mean eddy PV flux is defined as

f i(x, y) = u′
i q

′
i , (19)

and there are analogous R and B fluxes. In the channel, due to the zonal symmetry,
the time-mean fluxes have only meridional components. The time-mean eddy forcing

Fi(x, y) = −∇ f i (20)

can be interpreted as internally generated PV forcing that maintains the time-mean
flow (i.e. the multiple zonal jets). In the channel, the time-mean PV balance is between
eddy forcing and dissipation, and the latter always resists the jets.

The eddy forcing consists of the two physical components: convergences of f R

and f B are the Reynolds stress forcing FRi
and form stress forcing FBi

respectively.
The key dynamical question concerns the composition of the eddy forcing in terms
of the relative vorticity and buoyancy components and in terms of the vertical-mode
interactions.

First, we calculated the eddy-forcing patterns associated with the barotropic and
baroclinic self-interactions of the eigenmodes (figures 13 and 14 correspond to the
reference solutions) and correlated them with the corresponding PV profiles of the
time-mean jets. Significant positive/negative correlation suggests that the eigenmode
of interest maintains/resists the corresponding vertical-mode component of the jets
(table 1). We find that the baroclinic jets are maintained by the type 1 and type 2
eddy forcings, and the barotropic jets are maintained by the type 3 eddy forcing. The
baroclinic jets are resisted by the type 3 eddy forcing and substantially more so in
the WB flow. The barotropic jets are weakly resisted by the type 1 eddy forcing, and
the type 2 eddy forcing resists them only in the EB flow.

Regardless of the background flow direction, the barotropic jets are maintained by
the same type 3 eigenmode. This result explains the similarity of the eddy forcings in
the fully nonlinear, barotropic-mode dynamics of the EB and WB flows. Also, the type
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Figure 13. Eddy forcing and its components of the meridionally localized eigenmodes: EB
flow. Upper row of panels corresponds to the barotropic eddy forcing of the gravest eigenmodes
localized in the centre of the channel: (a) type 1, (b) type 2 and (c) type 3 eigenmodes.
Upper row of panels: full eddy forcing (thick), as well as its barotropic–barotropic (thin) and
baroclinic–baroclinic (thin with filled circles) components are shown. Lower row of panels:
full eddy forcing (thick), as well as its Reynolds stress (thin) and form stress (thin with filled
circles) forcing components are shown. The corresponding time-mean PV anomalies are shown
with dashed curve (arbitrary value). Each eddy forcing curve is normalized by the maximum
absolute value of the eddy forcing corresponding to the gravest eigenmode.

3 eddy forcing has equally important barotropic–barotropic and baroclinic–baroclinic
components that are qualitatively similar to those predicted by the nonlinear model.
The baroclinic jets can be maintained by either type 1 or type 2 eddy forcing,
depending on whether type 1 or type 2 eigenmode has the fastest growth rate. This
fact makes direction of the background flow crucial: as shown in the previous section,
type 1/type 2 eddy forcing dominates the EB/WB flow regime. Since the type 2 eddy
forcing is characterized by the presence of the high-frequency meridional oscillation,
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EB: Au = EB: Au = EB: Au = WB: Au = WB: Au = WB: Au =
0.7 1.0 1.3 0.7 1.0 1.3

Type 1: BT −0.08 −0.02 −0.01 −0.06 −0.05 −0.02
Type 1: BCL +0.24 +0.17 +0.13 +0.33 +0.30 +0.23

Type 2: BT −0.19 −0.07 −0.06 +0.02 +0.01 +0.01
Type 2: BCL +0.23 +0.16 +0.10 +0.14 +0.18 +0.19

Type 3: BT +0.40 +0.29 +0.23 +0.34 +0.22 +0.19
Type 3: BCL +0.01 −0.02 −0.04 −0.22 −0.14 −0.31

Table 1. Projection on the time-mean jets of the eddy forcing associated with critical
eigenmodes of the meridionally localized types. Correlation values labelled by BT/BCL
correspond to the barotropic/baroclinic dynamics; labels EB and WB indicate direction
of the background flow; and parameter Au indicates strength of the multiple jets.
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Figure 14. The same as figure 13 but for the WB flow.
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it explains the similar property of the corresponding, fully nonlinear eddy forcing
(not shown).

Important differences between the eigenmode-induced eddy forcings in the EB and
WB flows (figures 13 and 14) explain the following key aspects of the dynamics:
In the EB flow, the nonlinear baroclinic dynamics is such that the Reynolds and
form stress forcings significantly balance each other, and the former maintains the
jets (this result was originally obtained in P93). The linear eigenmode analysis not
only confirms these dynamical properties but also provides some insight, as it turns
out that the properties are a result of the collective action of all three types of
the eigenmodes. We find that the Reynolds stress forcing contribution comes solely
from the type 3 eigenmode, whereas the other eigenmodes provide weak Reynolds
stress forcings that are poorly correlated with the jets. The type 3 form stress forcing
resists the jets very efficiently, but its effect is partially cancelled by the type 1 and
type 2 form stress forcings. Thus, the baroclinic jets are explained by the collective
jet-maintaining action of the type 1 and type 2 form stress forcings and the type 3
Reynolds stress forcing; their action is resisted by the type 3 form stress forcing. In
other words, the eastward jets are more baroclinically unstable rather than ‘negatively
viscous’ (Starr 1968), but the baroclinic instability effect is substantially compensated
by the jet-driving buoyancy fluxes in the westward jets.

In the WB flow, the nonlinear baroclinic dynamics is such that the form stress
forcing maintains the jets, and the Reynolds stress forcing resists them. The eigenmode
analysis suggests that the weak jet-resisting Reynolds stress forcing and the strong jet-
maintaining form stress forcing are associated with the type 1 and type 2 eigenmodes.
However, both the Reynolds and form stress eddy forcings associated with the type 3
eigenmode tend to partially compensate for the above effects. Thus, the eastward jets
are just baroclinically unstable, whereas the counteracting ‘negative viscosity’ effect
is present but rather weak; and the westward jets provide the jet-maintaining form
stress forcing.

What is the mechanism that bounds the growth of the jets and equilibrates the flow?
Below, we demonstrate that this mechanism has a simple explanation in terms of the
structural changes of the eigenmodes that are associated with transient situations when
the jets are weaker or stronger than on the average. This equilibration mechanism
is complementary to some others, which are based on the weakly nonlinear triad
interactions (Pedlosky 1975a, b) and on nonlinear Lyapunov stability arguments
(Shepherd 1988).

To find this, first, we defined a measure of strength of the multiple jets as the
meridional average of zonally averaged zonal velocity ũ:

Σ (i)(t) =
1

Ly

∫ Ly

0

|ũ(i)(t, y)| dy, (21)

where the superscript denotes the vertical mode. Then, we calculated probability
density functions (p.d.f.s) of Σ (i) and found that the corresponding variances in the
EB regime are about ±2 % of the time mean Σ (i), and in the WB regime they are
about ±5 % and ±9 % of Σ (1) and Σ (2), respectively. All p.d.f.s are characterized by
single-maximum bell-shaped curves (not shown). We also calculated time series Υ (i)(t)
of correlation between instantaneous zonally averaged meridional profiles of the PV
anomaly and the corresponding eddy forcing. We verified that Υ (i)(t) is highly and
positively correlated with dΣ (i)(t)/dt , confirming that the jets are amplified, when the
eddy forcing has significant projection on them. In other words, Υ (i)(t) is the measure
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of efficiency of eddy-forcing action on the jets; when eddy forcing is highly efficient,
it amplifies the jets.

We also diagnosed time series of the total eddy energy of the flow, by defining eddies
as fluctuations around instantaneous zonally averaged flow. Then, we focused on the
conditional states when flow is either weaker (i.e. weak state, Σ <Σ) or stronger
(i.e. strong state, Σ > Σ) than the average. When instantaneous weak/strong flow is
accelerated/decelerated, we say that it is driven toward the average; if the opposite is
true, then the flow is driven away from the average. In the EB flow, we find that when
barotropic/baroclinic component of the jets is driven toward the average, correlation
of its eddy forcing with the jets changes by about 3 %/20 %. That is in the weak state
eddy forcing is more efficient, and in the strong state it is less efficient. In the WB flow,
the situation is similar, and the corresponding correlation changes are about 5 % and
35 % for the barotropic and baroclinic components of the jets, respectively. On the
other hand, in both EB and WB flows, the corresponding change of the eddy energy
is about 2%: the energy is larger in the weak state and smaller in the strong state.
Relatively small change of the eddy energy suggests that equilibration is achieved
mostly due to the change of the eddy-forcing efficiency rather than intensity.

The change of the eddy-forcing efficiency is simply explained in terms of the
meridionally localized linear eigenmodes (table 1). Around the flow equilibrium,
stronger jets result in more meridionally localized eddy forcing associated with the
eigenmodes (figures 13 and 14), and such forcing becomes less correlated with the
jets and, therefore, less efficient. The only exception is the baroclinic type 2 eddy
forcing in the WB flow, but its effect is strongly overcome by contributions of the
other eigenmodes.

To summarize, analysis of the multiple-jet linear eigenmodes yields insights into
the fully nonlinear dynamics. The underlying linear eigenmodes can be viewed as
descendants of the primary and secondary instability patterns that are distorted and
partially localized on the jets. In particular, analysis of the eigenmode-induced eddy
forcing explains the relative roles of the relative-vorticity and buoyancy eddy fluxes
in maintaining and resisting the jets. Also, this analysis explains some aspects of
the mechanism of the flow equilibration, but so far it does not predict the rate of
energy dissipation, the eddy heat flux and other important statistical properties of the
equilibrated state.

4. Conclusions and discussion
We focused on a fairly simple, multi-layer quasi-geostrophic model configured in a

zonal channel and driven by the imposed zonal background flow with vertical shear.
This is a classical model for the multiple zonal jets, such as those in the atmospheres
of giant gas planets (e.g. Haidvogel & Held 1980; Panetta 1993). Although the model
is idealized, as dictated by our theoretical approach, it is motivated by the oceanic
flows (e.g. nearly zonal flows in mid-latitude gyres, where the background mean flow
is either eastward or westward, and the Antarctic Circumpolar Current). Our study
connects the EB and WB flow regimes, and finds the mechanism that explains jet
formation in both of them. The WB flow has never been looked at in the past, and
we find that its multiple-jet dynamics is significantly different from that in the EB
flow. We carry out full nonlinear-model calculations and, then, focus on the linear
stability analysis of the obtained flow and its components. The results of the linear
analysis are verified against the fully nonlinear results (Berloff et al. 2009).
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It is commonly thought that the meridional scaling of the jets is the length scale
at which the inverse energy cascade, typical for the two-dimensional turbulence, is
‘arrested’ by propagating Rossby waves, so that the energy becomes directed into
multiple zonal jets. We dispute this conjecture by arguing that the energy efficiently
overcomes the ‘arrest’, as it goes directly from the unstable background flow into the
alternating meridional jets, that is the noodles. This pattern is consistent with the argu-
ments of the baroclinic instability theory that the direction perpendicular to the
mean flow corresponds to the motions that most efficiently extract energy from the
background flow (Pedlosky 1987).

The noodles emerge to finite amplitude and, then, experience the secondary,
transverse instability that sets meridional scale of the jets. In the channel, this
instability efficiently projects on the corresponding zonal linear eigenmode, which
is also weakly damped. This eigenmode emerges and contributes to the multiple
jets. Emerging multiple jets feed back on the primary and secondary instabilities
through the partial localization mechanism that produces three types of the unstable
eigenmodes. Analysis of these eigenmodes and their nonlinear self-interactions yields
significant insights into the flow dynamics. In particular, it explains interactions
between the vertical modes of the flow and roles of the Reynolds and form stress
forcings in the dynamics. Next, we find that meridional localization of instabilities
also provides bounding mechanism responsible for equilibration of the multiple jets.
Despite many complicating physical factors neglected in the idealized model, the
noodle solutions are remarkably similar to the analogous patterns seen in the ocean
observations and comprehensive eddy-resolving models (Huang et al. 2007).

Our results imply that there is no simple and universal scaling for the meridional
jet scale, because instabilities that generate the jets should depend on the vertical and
horizontal structures of the background flow (e.g. as previously suggested by Manfroi
& Young 2002 for simpler flows). This finding is further supported by Berloff et al.
(2009), who report disagreement between the Rhines scaling and the jet width in a
wide range of parameters. On the other hand, we argue that the jet scale can be
predicted by the linear stability analysis – this point of view is in the sharp contrast
with the nonlinear inverse cascade arguments.

The linear stability analysis of the equilibrated multiple jets makes several
predictions, which are consistent with the fully nonlinear dynamics (Berloff et al. 2009).
In particular, the barotropic component of the jets is maintained by both barotropic–
barotropic and baroclinic–baroclinic interactions. In the EB flow, the baroclinic
component of the jets is maintained by the Reynolds stress forcing and resisted by
the form stress forcing. The former is an example of ‘negative viscosity’ phenomena
(Phillips 1956; Starr 1968), and the latter is manifestation of the baroclinic instability.
More thorough analysis reveals that the eastward (prograde) jets are baroclinically
unstable rather than ‘negatively viscous’, but the baroclinic instability effect is
substantially compensated by the jet-driving buoyancy fluxes in the westward jets.

In the WB flow, the Reynolds stress forcing resists and the form stress forcing
maintains the jets. Hence, the jets are maintained locally by the process which
is opposite to the baroclinic instability (in the sense that the eddies release their
potential energy back to the mean flow) and opposed by the effective eddy viscosity.
In this case, the eastward (retrograde) jets are just baroclinically unstable, whereas
their counteracting ‘negative viscosity’ effect is present but rather weak; the westward
jets provide the jet-maintaining form stress forcing.

The simple model we have presented here needs to be extended in the future.
In particular, the extension of our analysis to closed-basin models should focus
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on the formation of the multiple jets in mid-latitude gyres and on the effects of
spatial inhomogeneity of the background flow. These inhomogeneities, deliberately
neglected in this study, can impose their own length scales and change significantly
the underlying dynamics. In particular, non-zonality of the background flow can
significantly boost generation of the eddies (Pedlosky 1987; Spall 2000) and change
their structure (Kamenkovich & Pedlosky 1996). Also, horizontal shear can become a
significant source of PV. Furthermore, a recent study by Hristova, Pedlosky & Spall
(2008) suggests that multiple zonal jets can be generated by instability of the purely
meridional, horizontally uniform and vertically sheared flow, and the connection of
that work to the present study needs to be clarified. With our model we do not find
meridional PV ‘staircase’ proposed in several more idealized studies (e.g. Dritschel &
McIntyre 2008), and this issue is discussed in details in Berloff et al. (2009). Finally,
calculation of the spectrum of the eigenmodes directly from the fully nonlinear
solutions can provide further insight into the flow equilibration process as well as into
the kinematics of mixing across and along the jets.
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Appendix. Linear stability problem
Here, we discuss formulation of the two-layer linear stability problem. In the

situation with a uniform shear and the unbounded domain, given Fourier transform
of the perturbation streamfunction

ψi −→ ψi exp[i(kx + ly − ωt)] (A 1)

the following linearized equations are obtained:

ω[−(k2 + l2 + S1)ψ1 + S1ψ2] = ψ1 [−kU1(k
2 + l2) + k(β − S1U2)

+ iν(k4 + 2k2l2 + l4)] + ψ2 [kS1U1], (A 2)

ω[S2ψ1 − (k2 + l2 + S2)ψ2] = ψ1 [kS2U2] + ψ2 [−kU2(k
2 + l2) + k(β − S2U1)

+ iν(k4 + 2k2l2 + l4) + iγ (k2 + l2)]. (A 3)

Non-trivial solutions of the above pair of the equations require that the determinant
of the coefficients of ψi is zero. This statement yields the dispersion relationship
between k, l and ω.

In the zonal channel with either uniform or non-uniform shear, Ui(y), given Fourier
transform in the zonal direction

ψi −→ ψi(y) exp[i(kx − ωt)] (A 4)

the linearized equations are

ω[ψ ′′
1 − (k2 + S1)ψ1 + S1ψ2] = iνψIV

1 + [k(U1 − i2ν)]ψ ′′
1 + [k(β − k2U1 − U ′′

1 − S1U2)

+ iνk4]ψ1 + [kS1U1]ψ2, (A 5)

ω[ψ ′′
2 − (k2 + S2)ψ2 + S2ψ1] = iνψIV

2 + [k(U2 − i2ν) − iγ ]ψ ′′
2 + [k(β − k2U2 − U ′′

2

− S2U1) + li(νk4 + γ k2)]ψ2 + [kS2U2]ψ1. (A 6)

The above equations are discretized with finite differences and solved numerically.
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In the unbounded domain with a uniform zonal shear Ui and periodic meridional
jets with finite amplitude Vi(x) we apply Fourier transform in the meridional direction:

ψi −→ ψi(x) exp[i(ly − ωt)]. (A 7)

We look for ψi(x) that is periodic over the domain that includes eight meridional jets.
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